Metamath Proof Explorer


Theorem e22

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e22.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e22.2 (    𝜑    ,    𝜓    ▶    𝜃    )
e22.3 ( 𝜒 → ( 𝜃𝜏 ) )
Assertion e22 (    𝜑    ,    𝜓    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e22.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e22.2 (    𝜑    ,    𝜓    ▶    𝜃    )
3 e22.3 ( 𝜒 → ( 𝜃𝜏 ) )
4 3 a1i ( 𝜒 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 1 1 2 4 e222 (    𝜑    ,    𝜓    ▶    𝜏    )