Metamath Proof Explorer


Theorem e220

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e220.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e220.2 (    𝜑    ,    𝜓    ▶    𝜃    )
e220.3 𝜏
e220.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion e220 (    𝜑    ,    𝜓    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e220.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e220.2 (    𝜑    ,    𝜓    ▶    𝜃    )
3 e220.3 𝜏
4 e220.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 3 vd02 (    𝜑    ,    𝜓    ▶    𝜏    )
6 1 2 5 4 e222 (    𝜑    ,    𝜓    ▶    𝜂    )