Metamath Proof Explorer


Theorem e223

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e223.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e223.2 (    𝜑    ,    𝜓    ▶    𝜃    )
e223.3 (    𝜑    ,    𝜓    ,    𝜏    ▶    𝜂    )
e223.4 ( 𝜒 → ( 𝜃 → ( 𝜂𝜁 ) ) )
Assertion e223 (    𝜑    ,    𝜓    ,    𝜏    ▶    𝜁    )

Proof

Step Hyp Ref Expression
1 e223.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e223.2 (    𝜑    ,    𝜓    ▶    𝜃    )
3 e223.3 (    𝜑    ,    𝜓    ,    𝜏    ▶    𝜂    )
4 e223.4 ( 𝜒 → ( 𝜃 → ( 𝜂𝜁 ) ) )
5 1 in2 (    𝜑    ▶    ( 𝜓𝜒 )    )
6 5 in1 ( 𝜑 → ( 𝜓𝜒 ) )
7 2 in2 (    𝜑    ▶    ( 𝜓𝜃 )    )
8 7 in1 ( 𝜑 → ( 𝜓𝜃 ) )
9 3 in3 (    𝜑    ,    𝜓    ▶    ( 𝜏𝜂 )    )
10 9 in2 (    𝜑    ▶    ( 𝜓 → ( 𝜏𝜂 ) )    )
11 10 in1 ( 𝜑 → ( 𝜓 → ( 𝜏𝜂 ) ) )
12 6 8 11 4 ee223 ( 𝜑 → ( 𝜓 → ( 𝜏𝜁 ) ) )
13 12 dfvd3ir (    𝜑    ,    𝜓    ,    𝜏    ▶    𝜁    )