Metamath Proof Explorer


Theorem e233

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 29-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e233.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e233.2 (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜏    )
e233.3 (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜂    )
e233.4 ( 𝜒 → ( 𝜏 → ( 𝜂𝜁 ) ) )
Assertion e233 (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜁    )

Proof

Step Hyp Ref Expression
1 e233.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e233.2 (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜏    )
3 e233.3 (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜂    )
4 e233.4 ( 𝜒 → ( 𝜏 → ( 𝜂𝜁 ) ) )
5 1 dfvd2i ( 𝜑 → ( 𝜓𝜒 ) )
6 2 dfvd3i ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
7 3 dfvd3i ( 𝜑 → ( 𝜓 → ( 𝜃𝜂 ) ) )
8 5 6 7 4 ee233 ( 𝜑 → ( 𝜓 → ( 𝜃𝜁 ) ) )
9 8 dfvd3ir (    𝜑    ,    𝜓    ,    𝜃    ▶    𝜁    )