Metamath Proof Explorer


Theorem e2bi

Description: Biconditional form of e2 . syl6ib is e2bi without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e2bi.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e2bi.2 ( 𝜒𝜃 )
Assertion e2bi (    𝜑    ,    𝜓    ▶    𝜃    )

Proof

Step Hyp Ref Expression
1 e2bi.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e2bi.2 ( 𝜒𝜃 )
3 2 biimpi ( 𝜒𝜃 )
4 1 3 e2 (    𝜑    ,    𝜓    ▶    𝜃    )