Metamath Proof Explorer


Theorem e2bir

Description: Right biconditional form of e2 . syl6ibr is e2bir without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e2bir.1 (    𝜑    ,    𝜓    ▶    𝜒    )
e2bir.2 ( 𝜃𝜒 )
Assertion e2bir (    𝜑    ,    𝜓    ▶    𝜃    )

Proof

Step Hyp Ref Expression
1 e2bir.1 (    𝜑    ,    𝜓    ▶    𝜒    )
2 e2bir.2 ( 𝜃𝜒 )
3 2 biimpri ( 𝜒𝜃 )
4 1 3 e2 (    𝜑    ,    𝜓    ▶    𝜃    )