Metamath Proof Explorer


Theorem e2ebind

Description: Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. e2ebind is derived from e2ebindVD . (Contributed by Alan Sare, 27-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion e2ebind ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 biidd ( ∀ 𝑦 𝑦 = 𝑥 → ( 𝜑𝜑 ) )
2 1 drex1 ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦 𝜑 ↔ ∃ 𝑥 𝜑 ) )
3 2 drex2 ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 ) )
4 excom ( ∃ 𝑦𝑥 𝜑 ↔ ∃ 𝑥𝑦 𝜑 )
5 3 4 bitrdi ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑥𝑦 𝜑 ) )
6 nfe1 𝑦𝑦 𝜑
7 6 19.9 ( ∃ 𝑦𝑦 𝜑 ↔ ∃ 𝑦 𝜑 )
8 5 7 bitr3di ( ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) )
9 8 aecoms ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦 𝜑 ) )