Metamath Proof Explorer


Theorem e30

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e30.1 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
e30.2 𝜏
e30.3 ( 𝜃 → ( 𝜏𝜂 ) )
Assertion e30 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e30.1 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
2 e30.2 𝜏
3 e30.3 ( 𝜃 → ( 𝜏𝜂 ) )
4 2 vd03 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜏    )
5 1 4 3 e33 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜂    )