Metamath Proof Explorer


Theorem e323

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 17-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e323.1 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
e323.2 (    𝜑    ,    𝜓    ▶    𝜏    )
e323.3 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜂    )
e323.4 ( 𝜃 → ( 𝜏 → ( 𝜂𝜁 ) ) )
Assertion e323 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜁    )

Proof

Step Hyp Ref Expression
1 e323.1 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
2 e323.2 (    𝜑    ,    𝜓    ▶    𝜏    )
3 e323.3 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜂    )
4 e323.4 ( 𝜃 → ( 𝜏 → ( 𝜂𝜁 ) ) )
5 1 dfvd3i ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
6 2 dfvd2i ( 𝜑 → ( 𝜓𝜏 ) )
7 3 dfvd3i ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )
8 5 6 7 4 ee323 ( 𝜑 → ( 𝜓 → ( 𝜒𝜁 ) ) )
9 8 dfvd3ir (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜁    )