Metamath Proof Explorer


Theorem e3bir

Description: Right biconditional form of e3 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e3bir.1 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
e3bir.2 ( 𝜏𝜃 )
Assertion e3bir (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e3bir.1 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
2 e3bir.2 ( 𝜏𝜃 )
3 2 biimpri ( 𝜃𝜏 )
4 1 3 e3 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜏    )