Metamath Proof Explorer
		
		
		
		Description:  Right biconditional form of e3 .  (Contributed by Alan Sare, 15-Jun-2011)  (Proof modification is discouraged.)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | e3bir.1 | ⊢ (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    ) | 
					
						|  |  | e3bir.2 | ⊢ ( 𝜏  ↔  𝜃 ) | 
				
					|  | Assertion | e3bir | ⊢  (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜏    ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | e3bir.1 | ⊢ (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    ) | 
						
							| 2 |  | e3bir.2 | ⊢ ( 𝜏  ↔  𝜃 ) | 
						
							| 3 | 2 | biimpri | ⊢ ( 𝜃  →  𝜏 ) | 
						
							| 4 | 1 3 | e3 | ⊢ (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜏    ) |