Metamath Proof Explorer


Theorem ecase

Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses ecase.1 ( ¬ 𝜑𝜒 )
ecase.2 ( ¬ 𝜓𝜒 )
ecase.3 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion ecase 𝜒

Proof

Step Hyp Ref Expression
1 ecase.1 ( ¬ 𝜑𝜒 )
2 ecase.2 ( ¬ 𝜓𝜒 )
3 ecase.3 ( ( 𝜑𝜓 ) → 𝜒 )
4 3 ex ( 𝜑 → ( 𝜓𝜒 ) )
5 4 1 2 pm2.61nii 𝜒