Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecase23d.1 | ⊢ ( 𝜑 → ¬ 𝜒 ) | |
| ecase23d.2 | ⊢ ( 𝜑 → ¬ 𝜃 ) | ||
| ecase23d.3 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) | ||
| Assertion | ecase23d | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecase23d.1 | ⊢ ( 𝜑 → ¬ 𝜒 ) | |
| 2 | ecase23d.2 | ⊢ ( 𝜑 → ¬ 𝜃 ) | |
| 3 | ecase23d.3 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) | |
| 4 | 3orass | ⊢ ( ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ↔ ( 𝜓 ∨ ( 𝜒 ∨ 𝜃 ) ) ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝜑 → ( 𝜓 ∨ ( 𝜒 ∨ 𝜃 ) ) ) |
| 6 | ioran | ⊢ ( ¬ ( 𝜒 ∨ 𝜃 ) ↔ ( ¬ 𝜒 ∧ ¬ 𝜃 ) ) | |
| 7 | 1 2 6 | sylanbrc | ⊢ ( 𝜑 → ¬ ( 𝜒 ∨ 𝜃 ) ) |
| 8 | 5 7 | olcnd | ⊢ ( 𝜑 → 𝜓 ) |