Metamath Proof Explorer


Theorem ecase23d

Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994)

Ref Expression
Hypotheses ecase23d.1 ( 𝜑 → ¬ 𝜒 )
ecase23d.2 ( 𝜑 → ¬ 𝜃 )
ecase23d.3 ( 𝜑 → ( 𝜓𝜒𝜃 ) )
Assertion ecase23d ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 ecase23d.1 ( 𝜑 → ¬ 𝜒 )
2 ecase23d.2 ( 𝜑 → ¬ 𝜃 )
3 ecase23d.3 ( 𝜑 → ( 𝜓𝜒𝜃 ) )
4 ioran ( ¬ ( 𝜒𝜃 ) ↔ ( ¬ 𝜒 ∧ ¬ 𝜃 ) )
5 1 2 4 sylanbrc ( 𝜑 → ¬ ( 𝜒𝜃 ) )
6 3orass ( ( 𝜓𝜒𝜃 ) ↔ ( 𝜓 ∨ ( 𝜒𝜃 ) ) )
7 3 6 sylib ( 𝜑 → ( 𝜓 ∨ ( 𝜒𝜃 ) ) )
8 7 ord ( 𝜑 → ( ¬ 𝜓 → ( 𝜒𝜃 ) ) )
9 5 8 mt3d ( 𝜑𝜓 )