Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecase23d.1 | ⊢ ( 𝜑 → ¬ 𝜒 ) | |
ecase23d.2 | ⊢ ( 𝜑 → ¬ 𝜃 ) | ||
ecase23d.3 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) | ||
Assertion | ecase23d | ⊢ ( 𝜑 → 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecase23d.1 | ⊢ ( 𝜑 → ¬ 𝜒 ) | |
2 | ecase23d.2 | ⊢ ( 𝜑 → ¬ 𝜃 ) | |
3 | ecase23d.3 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ) | |
4 | ioran | ⊢ ( ¬ ( 𝜒 ∨ 𝜃 ) ↔ ( ¬ 𝜒 ∧ ¬ 𝜃 ) ) | |
5 | 1 2 4 | sylanbrc | ⊢ ( 𝜑 → ¬ ( 𝜒 ∨ 𝜃 ) ) |
6 | 3orass | ⊢ ( ( 𝜓 ∨ 𝜒 ∨ 𝜃 ) ↔ ( 𝜓 ∨ ( 𝜒 ∨ 𝜃 ) ) ) | |
7 | 3 6 | sylib | ⊢ ( 𝜑 → ( 𝜓 ∨ ( 𝜒 ∨ 𝜃 ) ) ) |
8 | 7 | ord | ⊢ ( 𝜑 → ( ¬ 𝜓 → ( 𝜒 ∨ 𝜃 ) ) ) |
9 | 5 8 | mt3d | ⊢ ( 𝜑 → 𝜓 ) |