Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Mixed connectives
ecase2dOLD
Metamath Proof Explorer
Description: Obsolete version of ecase2d as of 19-Sep-2024. (Contributed by NM , 21-Apr-1994) (Proof shortened by Wolf Lammen , 22-Dec-2012)
(New usage is discouraged.) (Proof modification is discouraged.)
Ref
Expression
Hypotheses
ecase2d.1
⊢ ( 𝜑 → 𝜓 )
ecase2d.2
⊢ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) )
ecase2d.3
⊢ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜃 ) )
ecase2d.4
⊢ ( 𝜑 → ( 𝜏 ∨ ( 𝜒 ∨ 𝜃 ) ) )
Assertion
ecase2dOLD
⊢ ( 𝜑 → 𝜏 )
Proof
Step
Hyp
Ref
Expression
1
ecase2d.1
⊢ ( 𝜑 → 𝜓 )
2
ecase2d.2
⊢ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) )
3
ecase2d.3
⊢ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜃 ) )
4
ecase2d.4
⊢ ( 𝜑 → ( 𝜏 ∨ ( 𝜒 ∨ 𝜃 ) ) )
5
idd
⊢ ( 𝜑 → ( 𝜏 → 𝜏 ) )
6
2
pm2.21d
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → 𝜏 ) )
7
1 6
mpand
⊢ ( 𝜑 → ( 𝜒 → 𝜏 ) )
8
3
pm2.21d
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) )
9
1 8
mpand
⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) )
10
7 9
jaod
⊢ ( 𝜑 → ( ( 𝜒 ∨ 𝜃 ) → 𝜏 ) )
11
5 10 4
mpjaod
⊢ ( 𝜑 → 𝜏 )