Metamath Proof Explorer


Theorem ecase3

Description: Inference for elimination by cases. (Contributed by NM, 23-Mar-1995) (Proof shortened by Wolf Lammen, 26-Nov-2012)

Ref Expression
Hypotheses ecase3.1 ( 𝜑𝜒 )
ecase3.2 ( 𝜓𝜒 )
ecase3.3 ( ¬ ( 𝜑𝜓 ) → 𝜒 )
Assertion ecase3 𝜒

Proof

Step Hyp Ref Expression
1 ecase3.1 ( 𝜑𝜒 )
2 ecase3.2 ( 𝜓𝜒 )
3 ecase3.3 ( ¬ ( 𝜑𝜓 ) → 𝜒 )
4 1 2 jaoi ( ( 𝜑𝜓 ) → 𝜒 )
5 4 3 pm2.61i 𝜒