Metamath Proof Explorer


Theorem ecase3ad

Description: Deduction for elimination by cases. (Contributed by NM, 24-May-2013) (Proof shortened by Wolf Lammen, 20-Sep-2024)

Ref Expression
Hypotheses ecase3ad.1 ( 𝜑 → ( 𝜓𝜃 ) )
ecase3ad.2 ( 𝜑 → ( 𝜒𝜃 ) )
ecase3ad.3 ( 𝜑 → ( ( ¬ 𝜓 ∧ ¬ 𝜒 ) → 𝜃 ) )
Assertion ecase3ad ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 ecase3ad.1 ( 𝜑 → ( 𝜓𝜃 ) )
2 ecase3ad.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 ecase3ad.3 ( 𝜑 → ( ( ¬ 𝜓 ∧ ¬ 𝜒 ) → 𝜃 ) )
4 1 imp ( ( 𝜑𝜓 ) → 𝜃 )
5 2 imp ( ( 𝜑𝜒 ) → 𝜃 )
6 3 imp ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 )
7 4 5 6 pm2.61ddan ( 𝜑𝜃 )