Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ dom 𝑅 → 𝐴 ∈ V ) |
2 |
|
n0 |
⊢ ( [ 𝐴 ] 𝑅 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ [ 𝐴 ] 𝑅 ) |
3 |
|
ecexr |
⊢ ( 𝑥 ∈ [ 𝐴 ] 𝑅 → 𝐴 ∈ V ) |
4 |
3
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ [ 𝐴 ] 𝑅 → 𝐴 ∈ V ) |
5 |
2 4
|
sylbi |
⊢ ( [ 𝐴 ] 𝑅 ≠ ∅ → 𝐴 ∈ V ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
|
elecg |
⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
8 |
6 7
|
mpan |
⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
9 |
8
|
exbidv |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) |
10 |
2
|
a1i |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 ] 𝑅 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ [ 𝐴 ] 𝑅 ) ) |
11 |
|
eldmg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) |
12 |
9 10 11
|
3bitr4rd |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝑅 ↔ [ 𝐴 ] 𝑅 ≠ ∅ ) ) |
13 |
1 5 12
|
pm5.21nii |
⊢ ( 𝐴 ∈ dom 𝑅 ↔ [ 𝐴 ] 𝑅 ≠ ∅ ) |