| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐴  ∈  dom  𝑅  →  𝐴  ∈  V ) | 
						
							| 2 |  | n0 | ⊢ ( [ 𝐴 ] 𝑅  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  [ 𝐴 ] 𝑅 ) | 
						
							| 3 |  | ecexr | ⊢ ( 𝑥  ∈  [ 𝐴 ] 𝑅  →  𝐴  ∈  V ) | 
						
							| 4 | 3 | exlimiv | ⊢ ( ∃ 𝑥 𝑥  ∈  [ 𝐴 ] 𝑅  →  𝐴  ∈  V ) | 
						
							| 5 | 2 4 | sylbi | ⊢ ( [ 𝐴 ] 𝑅  ≠  ∅  →  𝐴  ∈  V ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 |  | elecg | ⊢ ( ( 𝑥  ∈  V  ∧  𝐴  ∈  V )  →  ( 𝑥  ∈  [ 𝐴 ] 𝑅  ↔  𝐴 𝑅 𝑥 ) ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( 𝐴  ∈  V  →  ( 𝑥  ∈  [ 𝐴 ] 𝑅  ↔  𝐴 𝑅 𝑥 ) ) | 
						
							| 9 | 8 | exbidv | ⊢ ( 𝐴  ∈  V  →  ( ∃ 𝑥 𝑥  ∈  [ 𝐴 ] 𝑅  ↔  ∃ 𝑥 𝐴 𝑅 𝑥 ) ) | 
						
							| 10 | 2 | a1i | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴 ] 𝑅  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  [ 𝐴 ] 𝑅 ) ) | 
						
							| 11 |  | eldmg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  dom  𝑅  ↔  ∃ 𝑥 𝐴 𝑅 𝑥 ) ) | 
						
							| 12 | 9 10 11 | 3bitr4rd | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  dom  𝑅  ↔  [ 𝐴 ] 𝑅  ≠  ∅ ) ) | 
						
							| 13 | 1 5 12 | pm5.21nii | ⊢ ( 𝐴  ∈  dom  𝑅  ↔  [ 𝐴 ] 𝑅  ≠  ∅ ) |