| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅 |
| 2 |
|
eceq1 |
⊢ ( 𝑥 = 𝐵 → [ 𝑥 ] 𝑅 = [ 𝐵 ] 𝑅 ) |
| 3 |
2
|
rspceeqv |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
| 4 |
1 3
|
mpan2 |
⊢ ( 𝐵 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
| 6 |
|
elecex |
⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ V ) ) |
| 7 |
6
|
imp |
⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ V ) |
| 8 |
|
elqsg |
⊢ ( [ 𝐵 ] 𝑅 ∈ V → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) ) |
| 10 |
5 9
|
mpbird |
⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |