Metamath Proof Explorer


Theorem ecelqs

Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion ecelqs ( ( ( 𝑅𝐴 ) ∈ 𝑉𝐵𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eqid [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅
2 eceq1 ( 𝑥 = 𝐵 → [ 𝑥 ] 𝑅 = [ 𝐵 ] 𝑅 )
3 2 rspceeqv ( ( 𝐵𝐴 ∧ [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 )
4 1 3 mpan2 ( 𝐵𝐴 → ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 )
5 4 adantl ( ( ( 𝑅𝐴 ) ∈ 𝑉𝐵𝐴 ) → ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 )
6 elecex ( ( 𝑅𝐴 ) ∈ 𝑉 → ( 𝐵𝐴 → [ 𝐵 ] 𝑅 ∈ V ) )
7 6 imp ( ( ( 𝑅𝐴 ) ∈ 𝑉𝐵𝐴 ) → [ 𝐵 ] 𝑅 ∈ V )
8 elqsg ( [ 𝐵 ] 𝑅 ∈ V → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) )
9 7 8 syl ( ( ( 𝑅𝐴 ) ∈ 𝑉𝐵𝐴 ) → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) )
10 5 9 mpbird ( ( ( 𝑅𝐴 ) ∈ 𝑉𝐵𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) )