Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | ecelqsdm | ⊢ ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsn0 | ⊢ ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → [ 𝐵 ] 𝑅 ≠ ∅ ) | |
2 | ecdmn0 | ⊢ ( 𝐵 ∈ dom 𝑅 ↔ [ 𝐵 ] 𝑅 ≠ ∅ ) | |
3 | 1 2 | sylibr | ⊢ ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ∈ dom 𝑅 ) |
4 | simpl | ⊢ ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → dom 𝑅 = 𝐴 ) | |
5 | 3 4 | eleqtrd | ⊢ ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ∈ 𝐴 ) |