Metamath Proof Explorer


Theorem ecelqsdm

Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995)

Ref Expression
Assertion ecelqsdm ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 elqsn0 ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → [ 𝐵 ] 𝑅 ≠ ∅ )
2 ecdmn0 ( 𝐵 ∈ dom 𝑅 ↔ [ 𝐵 ] 𝑅 ≠ ∅ )
3 1 2 sylibr ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ∈ dom 𝑅 )
4 simpl ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → dom 𝑅 = 𝐴 )
5 3 4 eleqtrd ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵𝐴 )