Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅 |
2 |
|
eceq1 |
⊢ ( 𝑥 = 𝐵 → [ 𝑥 ] 𝑅 = [ 𝐵 ] 𝑅 ) |
3 |
2
|
rspceeqv |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
4 |
1 3
|
mpan2 |
⊢ ( 𝐵 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) |
5 |
|
ecexg |
⊢ ( 𝑅 ∈ 𝑉 → [ 𝐵 ] 𝑅 ∈ V ) |
6 |
|
elqsg |
⊢ ( [ 𝐵 ] 𝑅 ∈ V → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) ) |
8 |
7
|
biimpar |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
9 |
4 8
|
sylan2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |