Metamath Proof Explorer


Theorem ecelqsg

Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion ecelqsg ( ( 𝑅𝑉𝐵𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eqid [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅
2 eceq1 ( 𝑥 = 𝐵 → [ 𝑥 ] 𝑅 = [ 𝐵 ] 𝑅 )
3 2 rspceeqv ( ( 𝐵𝐴 ∧ [ 𝐵 ] 𝑅 = [ 𝐵 ] 𝑅 ) → ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 )
4 1 3 mpan2 ( 𝐵𝐴 → ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 )
5 ecexg ( 𝑅𝑉 → [ 𝐵 ] 𝑅 ∈ V )
6 elqsg ( [ 𝐵 ] 𝑅 ∈ V → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) )
7 5 6 syl ( 𝑅𝑉 → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) )
8 7 biimpar ( ( 𝑅𝑉 ∧ ∃ 𝑥𝐴 [ 𝐵 ] 𝑅 = [ 𝑥 ] 𝑅 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) )
9 4 8 sylan2 ( ( 𝑅𝑉𝐵𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) )