Metamath Proof Explorer
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
|
|
Ref |
Expression |
|
Hypothesis |
ecelqsi.1 |
⊢ 𝑅 ∈ V |
|
Assertion |
ecelqsi |
⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ecelqsi.1 |
⊢ 𝑅 ∈ V |
2 |
|
ecelqsg |
⊢ ( ( 𝑅 ∈ V ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |