Metamath Proof Explorer


Theorem ecelqsw

Description: Membership of an equivalence class in a quotient set. More restrictive antecedent; kept for backward compatibility; for new work, prefer ecelqs . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014) (Proof shortened by AV, 25-Nov-2025)

Ref Expression
Assertion ecelqsw ( ( 𝑅𝑉𝐵𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) )

Proof

Step Hyp Ref Expression
1 resexg ( 𝑅𝑉 → ( 𝑅𝐴 ) ∈ V )
2 ecelqs ( ( ( 𝑅𝐴 ) ∈ V ∧ 𝐵𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) )
3 1 2 sylan ( ( 𝑅𝑉𝐵𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) )