Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | eceq1 | ⊢ ( 𝐴 = 𝐵 → [ 𝐴 ] 𝐶 = [ 𝐵 ] 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) | |
2 | 1 | imaeq2d | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 “ { 𝐴 } ) = ( 𝐶 “ { 𝐵 } ) ) |
3 | df-ec | ⊢ [ 𝐴 ] 𝐶 = ( 𝐶 “ { 𝐴 } ) | |
4 | df-ec | ⊢ [ 𝐵 ] 𝐶 = ( 𝐶 “ { 𝐵 } ) | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → [ 𝐴 ] 𝐶 = [ 𝐵 ] 𝐶 ) |