Metamath Proof Explorer


Theorem eceq1

Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion eceq1 ( 𝐴 = 𝐵 → [ 𝐴 ] 𝐶 = [ 𝐵 ] 𝐶 )

Proof

Step Hyp Ref Expression
1 sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )
2 1 imaeq2d ( 𝐴 = 𝐵 → ( 𝐶 “ { 𝐴 } ) = ( 𝐶 “ { 𝐵 } ) )
3 df-ec [ 𝐴 ] 𝐶 = ( 𝐶 “ { 𝐴 } )
4 df-ec [ 𝐵 ] 𝐶 = ( 𝐶 “ { 𝐵 } )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → [ 𝐴 ] 𝐶 = [ 𝐵 ] 𝐶 )