Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | eceq2 | ⊢ ( 𝐴 = 𝐵 → [ 𝐶 ] 𝐴 = [ 𝐶 ] 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 “ { 𝐶 } ) = ( 𝐵 “ { 𝐶 } ) ) | |
2 | df-ec | ⊢ [ 𝐶 ] 𝐴 = ( 𝐴 “ { 𝐶 } ) | |
3 | df-ec | ⊢ [ 𝐶 ] 𝐵 = ( 𝐵 “ { 𝐶 } ) | |
4 | 1 2 3 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → [ 𝐶 ] 𝐴 = [ 𝐶 ] 𝐵 ) |