Metamath Proof Explorer


Theorem eceq2

Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion eceq2 ( 𝐴 = 𝐵 → [ 𝐶 ] 𝐴 = [ 𝐶 ] 𝐵 )

Proof

Step Hyp Ref Expression
1 imaeq1 ( 𝐴 = 𝐵 → ( 𝐴 “ { 𝐶 } ) = ( 𝐵 “ { 𝐶 } ) )
2 df-ec [ 𝐶 ] 𝐴 = ( 𝐴 “ { 𝐶 } )
3 df-ec [ 𝐶 ] 𝐵 = ( 𝐵 “ { 𝐶 } )
4 1 2 3 3eqtr4g ( 𝐴 = 𝐵 → [ 𝐶 ] 𝐴 = [ 𝐶 ] 𝐵 )