Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecex2 | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecexg | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∈ V ) | |
| 2 | ecres2 | ⊢ ( 𝐵 ∈ 𝐴 → [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) = [ 𝐵 ] 𝑅 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝐵 ∈ 𝐴 → ( [ 𝐵 ] ( 𝑅 ↾ 𝐴 ) ∈ V ↔ [ 𝐵 ] 𝑅 ∈ V ) ) |
| 4 | 1 3 | syl5ibcom | ⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ V ) ) |