Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecexg | ⊢ ( 𝑅 ∈ 𝐵 → [ 𝐴 ] 𝑅 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec | ⊢ [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } ) | |
| 2 | imaexg | ⊢ ( 𝑅 ∈ 𝐵 → ( 𝑅 “ { 𝐴 } ) ∈ V ) | |
| 3 | 1 2 | eqeltrid | ⊢ ( 𝑅 ∈ 𝐵 → [ 𝐴 ] 𝑅 ∈ V ) |