Metamath Proof Explorer


Theorem ecexg

Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995)

Ref Expression
Assertion ecexg ( 𝑅𝐵 → [ 𝐴 ] 𝑅 ∈ V )

Proof

Step Hyp Ref Expression
1 df-ec [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } )
2 imaexg ( 𝑅𝐵 → ( 𝑅 “ { 𝐴 } ) ∈ V )
3 1 2 eqeltrid ( 𝑅𝐵 → [ 𝐴 ] 𝑅 ∈ V )