Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecexr | ⊢ ( 𝐴 ∈ [ 𝐵 ] 𝑅 → 𝐵 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | ⊢ ( 𝐴 ∈ ( 𝑅 “ { 𝐵 } ) → ¬ ( 𝑅 “ { 𝐵 } ) = ∅ ) | |
| 2 | snprc | ⊢ ( ¬ 𝐵 ∈ V ↔ { 𝐵 } = ∅ ) | |
| 3 | imaeq2 | ⊢ ( { 𝐵 } = ∅ → ( 𝑅 “ { 𝐵 } ) = ( 𝑅 “ ∅ ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( ¬ 𝐵 ∈ V → ( 𝑅 “ { 𝐵 } ) = ( 𝑅 “ ∅ ) ) |
| 5 | ima0 | ⊢ ( 𝑅 “ ∅ ) = ∅ | |
| 6 | 4 5 | eqtrdi | ⊢ ( ¬ 𝐵 ∈ V → ( 𝑅 “ { 𝐵 } ) = ∅ ) |
| 7 | 1 6 | nsyl2 | ⊢ ( 𝐴 ∈ ( 𝑅 “ { 𝐵 } ) → 𝐵 ∈ V ) |
| 8 | df-ec | ⊢ [ 𝐵 ] 𝑅 = ( 𝑅 “ { 𝐵 } ) | |
| 9 | 7 8 | eleq2s | ⊢ ( 𝐴 ∈ [ 𝐵 ] 𝑅 → 𝐵 ∈ V ) |