| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐵  ∈  𝐴 ) | 
						
							| 2 | 1 | snssd | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  { 𝐵 }  ⊆  𝐴 ) | 
						
							| 3 |  | dfss2 | ⊢ ( { 𝐵 }  ⊆  𝐴  ↔  ( { 𝐵 }  ∩  𝐴 )  =  { 𝐵 } ) | 
						
							| 4 | 2 3 | sylib | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( { 𝐵 }  ∩  𝐴 )  =  { 𝐵 } ) | 
						
							| 5 | 4 | imaeq2d | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝑅  “  ( { 𝐵 }  ∩  𝐴 ) )  =  ( 𝑅  “  { 𝐵 } ) ) | 
						
							| 6 | 5 | ineq1d | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( ( 𝑅  “  ( { 𝐵 }  ∩  𝐴 ) )  ∩  𝐴 )  =  ( ( 𝑅  “  { 𝐵 } )  ∩  𝐴 ) ) | 
						
							| 7 |  | imass2 | ⊢ ( { 𝐵 }  ⊆  𝐴  →  ( 𝑅  “  { 𝐵 } )  ⊆  ( 𝑅  “  𝐴 ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝑅  “  { 𝐵 } )  ⊆  ( 𝑅  “  𝐴 ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝑅  “  𝐴 )  ⊆  𝐴 ) | 
						
							| 10 | 8 9 | sstrd | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝑅  “  { 𝐵 } )  ⊆  𝐴 ) | 
						
							| 11 |  | dfss2 | ⊢ ( ( 𝑅  “  { 𝐵 } )  ⊆  𝐴  ↔  ( ( 𝑅  “  { 𝐵 } )  ∩  𝐴 )  =  ( 𝑅  “  { 𝐵 } ) ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( ( 𝑅  “  { 𝐵 } )  ∩  𝐴 )  =  ( 𝑅  “  { 𝐵 } ) ) | 
						
							| 13 | 6 12 | eqtr2d | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝑅  “  { 𝐵 } )  =  ( ( 𝑅  “  ( { 𝐵 }  ∩  𝐴 ) )  ∩  𝐴 ) ) | 
						
							| 14 |  | imainrect | ⊢ ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  “  { 𝐵 } )  =  ( ( 𝑅  “  ( { 𝐵 }  ∩  𝐴 ) )  ∩  𝐴 ) | 
						
							| 15 | 13 14 | eqtr4di | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝑅  “  { 𝐵 } )  =  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  “  { 𝐵 } ) ) | 
						
							| 16 |  | df-ec | ⊢ [ 𝐵 ] 𝑅  =  ( 𝑅  “  { 𝐵 } ) | 
						
							| 17 |  | df-ec | ⊢ [ 𝐵 ] ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) )  “  { 𝐵 } ) | 
						
							| 18 | 15 16 17 | 3eqtr4g | ⊢ ( ( ( 𝑅  “  𝐴 )  ⊆  𝐴  ∧  𝐵  ∈  𝐴 )  →  [ 𝐵 ] 𝑅  =  [ 𝐵 ] ( 𝑅  ∩  ( 𝐴  ×  𝐴 ) ) ) |