Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecopqsi.1 | ⊢ 𝑅 ∈ V | |
ecopqsi.2 | ⊢ 𝑆 = ( ( 𝐴 × 𝐴 ) / 𝑅 ) | ||
Assertion | ecopqsi | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → [ 〈 𝐵 , 𝐶 〉 ] 𝑅 ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopqsi.1 | ⊢ 𝑅 ∈ V | |
2 | ecopqsi.2 | ⊢ 𝑆 = ( ( 𝐴 × 𝐴 ) / 𝑅 ) | |
3 | opelxpi | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) ) | |
4 | 1 | ecelqsi | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) → [ 〈 𝐵 , 𝐶 〉 ] 𝑅 ∈ ( ( 𝐴 × 𝐴 ) / 𝑅 ) ) |
5 | 4 2 | eleqtrrdi | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) → [ 〈 𝐵 , 𝐶 〉 ] 𝑅 ∈ 𝑆 ) |
6 | 3 5 | syl | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → [ 〈 𝐵 , 𝐶 〉 ] 𝑅 ∈ 𝑆 ) |