Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecopqsi.1 | ⊢ 𝑅 ∈ V | |
| ecopqsi.2 | ⊢ 𝑆 = ( ( 𝐴 × 𝐴 ) / 𝑅 ) | ||
| Assertion | ecopqsi | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → [ 〈 𝐵 , 𝐶 〉 ] 𝑅 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopqsi.1 | ⊢ 𝑅 ∈ V | |
| 2 | ecopqsi.2 | ⊢ 𝑆 = ( ( 𝐴 × 𝐴 ) / 𝑅 ) | |
| 3 | opelxpi | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) ) | |
| 4 | 1 | ecelqsi | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) → [ 〈 𝐵 , 𝐶 〉 ] 𝑅 ∈ ( ( 𝐴 × 𝐴 ) / 𝑅 ) ) |
| 5 | 4 2 | eleqtrrdi | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) → [ 〈 𝐵 , 𝐶 〉 ] 𝑅 ∈ 𝑆 ) |
| 6 | 3 5 | syl | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → [ 〈 𝐵 , 𝐶 〉 ] 𝑅 ∈ 𝑆 ) |