Metamath Proof Explorer


Theorem ecopqsi

Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996)

Ref Expression
Hypotheses ecopqsi.1 𝑅 ∈ V
ecopqsi.2 𝑆 = ( ( 𝐴 × 𝐴 ) / 𝑅 )
Assertion ecopqsi ( ( 𝐵𝐴𝐶𝐴 ) → [ ⟨ 𝐵 , 𝐶 ⟩ ] 𝑅𝑆 )

Proof

Step Hyp Ref Expression
1 ecopqsi.1 𝑅 ∈ V
2 ecopqsi.2 𝑆 = ( ( 𝐴 × 𝐴 ) / 𝑅 )
3 opelxpi ( ( 𝐵𝐴𝐶𝐴 ) → ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝐴 × 𝐴 ) )
4 1 ecelqsi ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝐴 × 𝐴 ) → [ ⟨ 𝐵 , 𝐶 ⟩ ] 𝑅 ∈ ( ( 𝐴 × 𝐴 ) / 𝑅 ) )
5 4 2 eleqtrrdi ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝐴 × 𝐴 ) → [ ⟨ 𝐵 , 𝐶 ⟩ ] 𝑅𝑆 )
6 3 5 syl ( ( 𝐵𝐴𝐶𝐴 ) → [ ⟨ 𝐵 , 𝐶 ⟩ ] 𝑅𝑆 )