Metamath Proof Explorer


Theorem ecoptocl

Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypotheses ecoptocl.1 𝑆 = ( ( 𝐵 × 𝐶 ) / 𝑅 )
ecoptocl.2 ( [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = 𝐴 → ( 𝜑𝜓 ) )
ecoptocl.3 ( ( 𝑥𝐵𝑦𝐶 ) → 𝜑 )
Assertion ecoptocl ( 𝐴𝑆𝜓 )

Proof

Step Hyp Ref Expression
1 ecoptocl.1 𝑆 = ( ( 𝐵 × 𝐶 ) / 𝑅 )
2 ecoptocl.2 ( [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = 𝐴 → ( 𝜑𝜓 ) )
3 ecoptocl.3 ( ( 𝑥𝐵𝑦𝐶 ) → 𝜑 )
4 elqsi ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) / 𝑅 ) → ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) 𝐴 = [ 𝑧 ] 𝑅 )
5 eqid ( 𝐵 × 𝐶 ) = ( 𝐵 × 𝐶 )
6 eceq1 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝑧 → [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = [ 𝑧 ] 𝑅 )
7 6 eqeq2d ( ⟨ 𝑥 , 𝑦 ⟩ = 𝑧 → ( 𝐴 = [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅𝐴 = [ 𝑧 ] 𝑅 ) )
8 7 imbi1d ( ⟨ 𝑥 , 𝑦 ⟩ = 𝑧 → ( ( 𝐴 = [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅𝜓 ) ↔ ( 𝐴 = [ 𝑧 ] 𝑅𝜓 ) ) )
9 2 eqcoms ( 𝐴 = [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 → ( 𝜑𝜓 ) )
10 3 9 syl5ibcom ( ( 𝑥𝐵𝑦𝐶 ) → ( 𝐴 = [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅𝜓 ) )
11 5 8 10 optocl ( 𝑧 ∈ ( 𝐵 × 𝐶 ) → ( 𝐴 = [ 𝑧 ] 𝑅𝜓 ) )
12 11 rexlimiv ( ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) 𝐴 = [ 𝑧 ] 𝑅𝜓 )
13 4 12 syl ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) / 𝑅 ) → 𝜓 )
14 13 1 eleq2s ( 𝐴𝑆𝜓 )