Step |
Hyp |
Ref |
Expression |
1 |
|
ecoptocl.1 |
⊢ 𝑆 = ( ( 𝐵 × 𝐶 ) / 𝑅 ) |
2 |
|
ecoptocl.2 |
⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
ecoptocl.3 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝜑 ) |
4 |
|
elqsi |
⊢ ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) / 𝑅 ) → ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) 𝐴 = [ 𝑧 ] 𝑅 ) |
5 |
|
eqid |
⊢ ( 𝐵 × 𝐶 ) = ( 𝐵 × 𝐶 ) |
6 |
|
eceq1 |
⊢ ( 〈 𝑥 , 𝑦 〉 = 𝑧 → [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = [ 𝑧 ] 𝑅 ) |
7 |
6
|
eqeq2d |
⊢ ( 〈 𝑥 , 𝑦 〉 = 𝑧 → ( 𝐴 = [ 〈 𝑥 , 𝑦 〉 ] 𝑅 ↔ 𝐴 = [ 𝑧 ] 𝑅 ) ) |
8 |
7
|
imbi1d |
⊢ ( 〈 𝑥 , 𝑦 〉 = 𝑧 → ( ( 𝐴 = [ 〈 𝑥 , 𝑦 〉 ] 𝑅 → 𝜓 ) ↔ ( 𝐴 = [ 𝑧 ] 𝑅 → 𝜓 ) ) ) |
9 |
2
|
eqcoms |
⊢ ( 𝐴 = [ 〈 𝑥 , 𝑦 〉 ] 𝑅 → ( 𝜑 ↔ 𝜓 ) ) |
10 |
3 9
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐴 = [ 〈 𝑥 , 𝑦 〉 ] 𝑅 → 𝜓 ) ) |
11 |
5 8 10
|
optocl |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐶 ) → ( 𝐴 = [ 𝑧 ] 𝑅 → 𝜓 ) ) |
12 |
11
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) 𝐴 = [ 𝑧 ] 𝑅 → 𝜓 ) |
13 |
4 12
|
syl |
⊢ ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) / 𝑅 ) → 𝜓 ) |
14 |
13 1
|
eleq2s |
⊢ ( 𝐴 ∈ 𝑆 → 𝜓 ) |