Metamath Proof Explorer


Theorem ecqs

Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999)

Ref Expression
Hypothesis ecqs.1 𝑅 ∈ V
Assertion ecqs [ 𝐴 ] 𝑅 = ( { 𝐴 } / 𝑅 )

Proof

Step Hyp Ref Expression
1 ecqs.1 𝑅 ∈ V
2 df-ec [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } )
3 uniqs ( 𝑅 ∈ V → ( { 𝐴 } / 𝑅 ) = ( 𝑅 “ { 𝐴 } ) )
4 1 3 ax-mp ( { 𝐴 } / 𝑅 ) = ( 𝑅 “ { 𝐴 } )
5 2 4 eqtr4i [ 𝐴 ] 𝑅 = ( { 𝐴 } / 𝑅 )