Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ecqs.1 | ⊢ 𝑅 ∈ V | |
Assertion | ecqs | ⊢ [ 𝐴 ] 𝑅 = ∪ ( { 𝐴 } / 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecqs.1 | ⊢ 𝑅 ∈ V | |
2 | df-ec | ⊢ [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } ) | |
3 | uniqs | ⊢ ( 𝑅 ∈ V → ∪ ( { 𝐴 } / 𝑅 ) = ( 𝑅 “ { 𝐴 } ) ) | |
4 | 1 3 | ax-mp | ⊢ ∪ ( { 𝐴 } / 𝑅 ) = ( 𝑅 “ { 𝐴 } ) |
5 | 2 4 | eqtr4i | ⊢ [ 𝐴 ] 𝑅 = ∪ ( { 𝐴 } / 𝑅 ) |