| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ecqusaddd.i | 
							⊢ ( 𝜑  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ecqusaddd.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							ecqusaddd.g | 
							⊢  ∼   =  ( 𝑅  ~QG  𝐼 )  | 
						
						
							| 4 | 
							
								
							 | 
							ecqusaddd.q | 
							⊢ 𝑄  =  ( 𝑅  /s   ∼  )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							ecqusaddd | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ]  ∼   =  ( [ 𝐴 ]  ∼  ( +g ‘ 𝑄 ) [ 𝐶 ]  ∼  ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							elfvexd | 
							⊢ ( 𝜑  →  𝑅  ∈  V )  | 
						
						
							| 7 | 
							
								
							 | 
							nsgsubg | 
							⊢ ( 𝐼  ∈  ( NrmSGrp ‘ 𝑅 )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  →  𝑅  ∈  Grp )  | 
						
						
							| 9 | 
							
								1 7 8
							 | 
							3syl | 
							⊢ ( 𝜑  →  𝑅  ∈  Grp )  | 
						
						
							| 10 | 
							
								9
							 | 
							anim1i | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  ( 𝑅  ∈  Grp  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝑅  ∈  Grp  ∧  𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 )  ↔  ( 𝑅  ∈  Grp  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  ( 𝑅  ∈  Grp  ∧  𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 )  | 
						
						
							| 14 | 
							
								2 13
							 | 
							grpcl | 
							⊢ ( ( 𝑅  ∈  Grp  ∧  𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 )  →  ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 )  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 )  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 )  | 
						
						
							| 17 | 
							
								3 4 2 16
							 | 
							quseccl0 | 
							⊢ ( ( 𝑅  ∈  V  ∧  ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 )  ∈  𝐵 )  →  [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ]  ∼   ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 18 | 
							
								6 15 17
							 | 
							syl2an2r | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ]  ∼   ∈  ( Base ‘ 𝑄 ) )  | 
						
						
							| 19 | 
							
								5 18
							 | 
							eqeltrrd | 
							⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐵  ∧  𝐶  ∈  𝐵 ) )  →  ( [ 𝐴 ]  ∼  ( +g ‘ 𝑄 ) [ 𝐶 ]  ∼  )  ∈  ( Base ‘ 𝑄 ) )  |