Metamath Proof Explorer


Theorem ecqusaddcl

Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses ecqusaddd.i ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
ecqusaddd.b 𝐵 = ( Base ‘ 𝑅 )
ecqusaddd.g = ( 𝑅 ~QG 𝐼 )
ecqusaddd.q 𝑄 = ( 𝑅 /s )
Assertion ecqusaddcl ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( +g𝑄 ) [ 𝐶 ] ) ∈ ( Base ‘ 𝑄 ) )

Proof

Step Hyp Ref Expression
1 ecqusaddd.i ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
2 ecqusaddd.b 𝐵 = ( Base ‘ 𝑅 )
3 ecqusaddd.g = ( 𝑅 ~QG 𝐼 )
4 ecqusaddd.q 𝑄 = ( 𝑅 /s )
5 1 2 3 4 ecqusaddd ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] = ( [ 𝐴 ] ( +g𝑄 ) [ 𝐶 ] ) )
6 1 elfvexd ( 𝜑𝑅 ∈ V )
7 nsgsubg ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
8 subgrcl ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝑅 ∈ Grp )
9 1 7 8 3syl ( 𝜑𝑅 ∈ Grp )
10 9 anim1i ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 𝑅 ∈ Grp ∧ ( 𝐴𝐵𝐶𝐵 ) ) )
11 3anass ( ( 𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵 ) ↔ ( 𝑅 ∈ Grp ∧ ( 𝐴𝐵𝐶𝐵 ) ) )
12 10 11 sylibr ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵 ) )
13 eqid ( +g𝑅 ) = ( +g𝑅 )
14 2 13 grpcl ( ( 𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵 ) → ( 𝐴 ( +g𝑅 ) 𝐶 ) ∈ 𝐵 )
15 12 14 syl ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 𝐴 ( +g𝑅 ) 𝐶 ) ∈ 𝐵 )
16 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
17 3 4 2 16 quseccl0 ( ( 𝑅 ∈ V ∧ ( 𝐴 ( +g𝑅 ) 𝐶 ) ∈ 𝐵 ) → [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] ∈ ( Base ‘ 𝑄 ) )
18 6 15 17 syl2an2r ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] ∈ ( Base ‘ 𝑄 ) )
19 5 18 eqeltrrd ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( +g𝑄 ) [ 𝐶 ] ) ∈ ( Base ‘ 𝑄 ) )