Step |
Hyp |
Ref |
Expression |
1 |
|
ecqusaddd.i |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
2 |
|
ecqusaddd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
ecqusaddd.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
4 |
|
ecqusaddd.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
5 |
1
|
anim1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
6 |
|
3anass |
⊢ ( ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
7 |
5 6
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) |
8 |
3
|
oveq2i |
⊢ ( 𝑅 /s ∼ ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
9 |
4 8
|
eqtri |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
12 |
9 2 10 11
|
qusadd |
⊢ ( ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) ) |
13 |
7 12
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) ) |
14 |
3
|
eceq2i |
⊢ [ 𝐴 ] ∼ = [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) |
15 |
3
|
eceq2i |
⊢ [ 𝐶 ] ∼ = [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) |
16 |
14 15
|
oveq12i |
⊢ ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) = ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g ‘ 𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) |
17 |
3
|
eceq2i |
⊢ [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ = [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) |
18 |
13 16 17
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) = [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ ) |
19 |
18
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ = ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) ) |