Metamath Proof Explorer


Theorem ecqusaddd

Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses ecqusaddd.i ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
ecqusaddd.b 𝐵 = ( Base ‘ 𝑅 )
ecqusaddd.g = ( 𝑅 ~QG 𝐼 )
ecqusaddd.q 𝑄 = ( 𝑅 /s )
Assertion ecqusaddd ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] = ( [ 𝐴 ] ( +g𝑄 ) [ 𝐶 ] ) )

Proof

Step Hyp Ref Expression
1 ecqusaddd.i ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
2 ecqusaddd.b 𝐵 = ( Base ‘ 𝑅 )
3 ecqusaddd.g = ( 𝑅 ~QG 𝐼 )
4 ecqusaddd.q 𝑄 = ( 𝑅 /s )
5 1 anim1i ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ ( 𝐴𝐵𝐶𝐵 ) ) )
6 3anass ( ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴𝐵𝐶𝐵 ) ↔ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ ( 𝐴𝐵𝐶𝐵 ) ) )
7 5 6 sylibr ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴𝐵𝐶𝐵 ) )
8 3 oveq2i ( 𝑅 /s ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
9 4 8 eqtri 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
10 eqid ( +g𝑅 ) = ( +g𝑅 )
11 eqid ( +g𝑄 ) = ( +g𝑄 )
12 9 2 10 11 qusadd ( ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ∧ 𝐴𝐵𝐶𝐵 ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) )
13 7 12 syl ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 ) )
14 3 eceq2i [ 𝐴 ] = [ 𝐴 ] ( 𝑅 ~QG 𝐼 )
15 3 eceq2i [ 𝐶 ] = [ 𝐶 ] ( 𝑅 ~QG 𝐼 )
16 14 15 oveq12i ( [ 𝐴 ] ( +g𝑄 ) [ 𝐶 ] ) = ( [ 𝐴 ] ( 𝑅 ~QG 𝐼 ) ( +g𝑄 ) [ 𝐶 ] ( 𝑅 ~QG 𝐼 ) )
17 3 eceq2i [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] = [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] ( 𝑅 ~QG 𝐼 )
18 13 16 17 3eqtr4g ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → ( [ 𝐴 ] ( +g𝑄 ) [ 𝐶 ] ) = [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] )
19 18 eqcomd ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐵 ) ) → [ ( 𝐴 ( +g𝑅 ) 𝐶 ) ] = ( [ 𝐴 ] ( +g𝑄 ) [ 𝐶 ] ) )