Metamath Proof Explorer
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995) (Revised by Mario Carneiro, 12-Aug-2015)
|
|
Ref |
Expression |
|
Hypothesis |
ecss.1 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
|
Assertion |
ecss |
⊢ ( 𝜑 → [ 𝐴 ] 𝑅 ⊆ 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ecss.1 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
2 |
|
df-ec |
⊢ [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } ) |
3 |
|
imassrn |
⊢ ( 𝑅 “ { 𝐴 } ) ⊆ ran 𝑅 |
4 |
2 3
|
eqsstri |
⊢ [ 𝐴 ] 𝑅 ⊆ ran 𝑅 |
5 |
|
errn |
⊢ ( 𝑅 Er 𝑋 → ran 𝑅 = 𝑋 ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → ran 𝑅 = 𝑋 ) |
7 |
4 6
|
sseqtrid |
⊢ ( 𝜑 → [ 𝐴 ] 𝑅 ⊆ 𝑋 ) |