Metamath Proof Explorer


Theorem ecss

Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis ecss.1 ( 𝜑𝑅 Er 𝑋 )
Assertion ecss ( 𝜑 → [ 𝐴 ] 𝑅𝑋 )

Proof

Step Hyp Ref Expression
1 ecss.1 ( 𝜑𝑅 Er 𝑋 )
2 df-ec [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } )
3 imassrn ( 𝑅 “ { 𝐴 } ) ⊆ ran 𝑅
4 2 3 eqsstri [ 𝐴 ] 𝑅 ⊆ ran 𝑅
5 errn ( 𝑅 Er 𝑋 → ran 𝑅 = 𝑋 )
6 1 5 syl ( 𝜑 → ran 𝑅 = 𝑋 )
7 4 6 sseqtrid ( 𝜑 → [ 𝐴 ] 𝑅𝑋 )