Metamath Proof Explorer
		
		
		
		Description:  Implicit substitution of class for equivalence class.  (Contributed by NM, 23-Jul-1995)  (Revised by Mario Carneiro, 9-Jul-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ectocl.1 | ⊢ 𝑆  =  ( 𝐵  /  𝑅 ) | 
					
						|  |  | ectocl.2 | ⊢ ( [ 𝑥 ] 𝑅  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
					
						|  |  | ectocl.3 | ⊢ ( 𝑥  ∈  𝐵  →  𝜑 ) | 
				
					|  | Assertion | ectocl | ⊢  ( 𝐴  ∈  𝑆  →  𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ectocl.1 | ⊢ 𝑆  =  ( 𝐵  /  𝑅 ) | 
						
							| 2 |  | ectocl.2 | ⊢ ( [ 𝑥 ] 𝑅  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | ectocl.3 | ⊢ ( 𝑥  ∈  𝐵  →  𝜑 ) | 
						
							| 4 |  | tru | ⊢ ⊤ | 
						
							| 5 | 3 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  𝐵 )  →  𝜑 ) | 
						
							| 6 | 1 2 5 | ectocld | ⊢ ( ( ⊤  ∧  𝐴  ∈  𝑆 )  →  𝜓 ) | 
						
							| 7 | 4 6 | mpan | ⊢ ( 𝐴  ∈  𝑆  →  𝜓 ) |