Metamath Proof Explorer


Theorem ectocld

Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ectocl.1 𝑆 = ( 𝐵 / 𝑅 )
ectocl.2 ( [ 𝑥 ] 𝑅 = 𝐴 → ( 𝜑𝜓 ) )
ectocld.3 ( ( 𝜒𝑥𝐵 ) → 𝜑 )
Assertion ectocld ( ( 𝜒𝐴𝑆 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 ectocl.1 𝑆 = ( 𝐵 / 𝑅 )
2 ectocl.2 ( [ 𝑥 ] 𝑅 = 𝐴 → ( 𝜑𝜓 ) )
3 ectocld.3 ( ( 𝜒𝑥𝐵 ) → 𝜑 )
4 2 eqcoms ( 𝐴 = [ 𝑥 ] 𝑅 → ( 𝜑𝜓 ) )
5 3 4 syl5ibcom ( ( 𝜒𝑥𝐵 ) → ( 𝐴 = [ 𝑥 ] 𝑅𝜓 ) )
6 5 rexlimdva ( 𝜒 → ( ∃ 𝑥𝐵 𝐴 = [ 𝑥 ] 𝑅𝜓 ) )
7 elqsi ( 𝐴 ∈ ( 𝐵 / 𝑅 ) → ∃ 𝑥𝐵 𝐴 = [ 𝑥 ] 𝑅 )
8 7 1 eleq2s ( 𝐴𝑆 → ∃ 𝑥𝐵 𝐴 = [ 𝑥 ] 𝑅 )
9 6 8 impel ( ( 𝜒𝐴𝑆 ) → 𝜓 )