Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ectocl.1 | ⊢ 𝑆 = ( 𝐵 / 𝑅 ) | |
| ectocl.2 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ectocld.3 | ⊢ ( ( 𝜒 ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) | ||
| Assertion | ectocld | ⊢ ( ( 𝜒 ∧ 𝐴 ∈ 𝑆 ) → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ectocl.1 | ⊢ 𝑆 = ( 𝐵 / 𝑅 ) | |
| 2 | ectocl.2 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | ectocld.3 | ⊢ ( ( 𝜒 ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) | |
| 4 | 2 | eqcoms | ⊢ ( 𝐴 = [ 𝑥 ] 𝑅 → ( 𝜑 ↔ 𝜓 ) ) |
| 5 | 3 4 | syl5ibcom | ⊢ ( ( 𝜒 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 = [ 𝑥 ] 𝑅 → 𝜓 ) ) |
| 6 | 5 | rexlimdva | ⊢ ( 𝜒 → ( ∃ 𝑥 ∈ 𝐵 𝐴 = [ 𝑥 ] 𝑅 → 𝜓 ) ) |
| 7 | elqsi | ⊢ ( 𝐴 ∈ ( 𝐵 / 𝑅 ) → ∃ 𝑥 ∈ 𝐵 𝐴 = [ 𝑥 ] 𝑅 ) | |
| 8 | 7 1 | eleq2s | ⊢ ( 𝐴 ∈ 𝑆 → ∃ 𝑥 ∈ 𝐵 𝐴 = [ 𝑥 ] 𝑅 ) |
| 9 | 6 8 | impel | ⊢ ( ( 𝜒 ∧ 𝐴 ∈ 𝑆 ) → 𝜓 ) |