Step |
Hyp |
Ref |
Expression |
1 |
|
ere |
⊢ e ∈ ℝ |
2 |
1
|
recni |
⊢ e ∈ ℂ |
3 |
|
ene0 |
⊢ e ≠ 0 |
4 |
|
cxpef |
⊢ ( ( e ∈ ℂ ∧ e ≠ 0 ∧ 𝐴 ∈ ℂ ) → ( e ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) ) |
5 |
2 3 4
|
mp3an12 |
⊢ ( 𝐴 ∈ ℂ → ( e ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) ) |
6 |
|
loge |
⊢ ( log ‘ e ) = 1 |
7 |
6
|
oveq2i |
⊢ ( 𝐴 · ( log ‘ e ) ) = ( 𝐴 · 1 ) |
8 |
|
mulid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) |
9 |
7 8
|
syl5eq |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( log ‘ e ) ) = 𝐴 ) |
10 |
9
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) = ( exp ‘ 𝐴 ) ) |
11 |
5 10
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( e ↑𝑐 𝐴 ) = ( exp ‘ 𝐴 ) ) |