Metamath Proof Explorer


Theorem ecxp

Description: Write the exponential function as an exponent to the power _e . (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion ecxp ( 𝐴 ∈ ℂ → ( e ↑𝑐 𝐴 ) = ( exp ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ere e ∈ ℝ
2 1 recni e ∈ ℂ
3 ene0 e ≠ 0
4 cxpef ( ( e ∈ ℂ ∧ e ≠ 0 ∧ 𝐴 ∈ ℂ ) → ( e ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) )
5 2 3 4 mp3an12 ( 𝐴 ∈ ℂ → ( e ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) )
6 loge ( log ‘ e ) = 1
7 6 oveq2i ( 𝐴 · ( log ‘ e ) ) = ( 𝐴 · 1 )
8 mulid1 ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 )
9 7 8 syl5eq ( 𝐴 ∈ ℂ → ( 𝐴 · ( log ‘ e ) ) = 𝐴 )
10 9 fveq2d ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) = ( exp ‘ 𝐴 ) )
11 5 10 eqtrd ( 𝐴 ∈ ℂ → ( e ↑𝑐 𝐴 ) = ( exp ‘ 𝐴 ) )