Step |
Hyp |
Ref |
Expression |
1 |
|
edg0iedg0.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
edg0iedg0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
4 |
2 3
|
eqtri |
⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
5 |
4
|
eqeq1i |
⊢ ( 𝐸 = ∅ ↔ ran ( iEdg ‘ 𝐺 ) = ∅ ) |
6 |
5
|
a1i |
⊢ ( Fun 𝐼 → ( 𝐸 = ∅ ↔ ran ( iEdg ‘ 𝐺 ) = ∅ ) ) |
7 |
1
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
8 |
7
|
rneqi |
⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
9 |
8
|
eqeq1i |
⊢ ( ran ( iEdg ‘ 𝐺 ) = ∅ ↔ ran 𝐼 = ∅ ) |
10 |
9
|
a1i |
⊢ ( Fun 𝐼 → ( ran ( iEdg ‘ 𝐺 ) = ∅ ↔ ran 𝐼 = ∅ ) ) |
11 |
|
funrel |
⊢ ( Fun 𝐼 → Rel 𝐼 ) |
12 |
|
relrn0 |
⊢ ( Rel 𝐼 → ( 𝐼 = ∅ ↔ ran 𝐼 = ∅ ) ) |
13 |
12
|
bicomd |
⊢ ( Rel 𝐼 → ( ran 𝐼 = ∅ ↔ 𝐼 = ∅ ) ) |
14 |
11 13
|
syl |
⊢ ( Fun 𝐼 → ( ran 𝐼 = ∅ ↔ 𝐼 = ∅ ) ) |
15 |
6 10 14
|
3bitrd |
⊢ ( Fun 𝐼 → ( 𝐸 = ∅ ↔ 𝐼 = ∅ ) ) |