Step |
Hyp |
Ref |
Expression |
1 |
|
basvtxval.s |
⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) |
2 |
|
basvtxval.d |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
3 |
|
edgfiedgval.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) |
4 |
|
edgfiedgval.f |
⊢ ( 𝜑 → 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ 𝐺 ) |
5 |
|
structn0fun |
⊢ ( 𝐺 Struct 𝑋 → Fun ( 𝐺 ∖ { ∅ } ) ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → Fun ( 𝐺 ∖ { ∅ } ) ) |
7 |
|
funiedgdmge2val |
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) ) |
8 |
6 2 7
|
syl2anc |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ( .ef ‘ 𝐺 ) ) |
9 |
|
edgfid |
⊢ .ef = Slot ( .ef ‘ ndx ) |
10 |
|
structex |
⊢ ( 𝐺 Struct 𝑋 → 𝐺 ∈ V ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
12 |
|
structfung |
⊢ ( 𝐺 Struct 𝑋 → Fun ◡ ◡ 𝐺 ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → Fun ◡ ◡ 𝐺 ) |
14 |
9 11 13 4 3
|
strfv2d |
⊢ ( 𝜑 → 𝐸 = ( .ef ‘ 𝐺 ) ) |
15 |
8 14
|
eqtr4d |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = 𝐸 ) |