Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020) (Revised by AV, 8-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | edgiedgb.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | edgiedgb | ⊢ ( Fun 𝐼 → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom 𝐼 𝐸 = ( 𝐼 ‘ 𝑥 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | edgiedgb.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 3 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 | 
| 4 | 3 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 | 
| 5 | 2 4 | eqtri | ⊢ ( Edg ‘ 𝐺 ) = ran 𝐼 | 
| 6 | 5 | eleq2i | ⊢ ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ 𝐸 ∈ ran 𝐼 ) | 
| 7 | elrnrexdmb | ⊢ ( Fun 𝐼 → ( 𝐸 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ dom 𝐼 𝐸 = ( 𝐼 ‘ 𝑥 ) ) ) | |
| 8 | 6 7 | bitrid | ⊢ ( Fun 𝐼 → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom 𝐼 𝐸 = ( 𝐼 ‘ 𝑥 ) ) ) |