| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edginwlk.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | edginwlk.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( Fun  𝐼  ∧  𝐹  ∈  Word  dom  𝐼  ∧  𝐾  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  Fun  𝐼 ) | 
						
							| 4 |  | wrdsymbcl | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝐾  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 𝐾 )  ∈  dom  𝐼 ) | 
						
							| 5 | 4 | 3adant1 | ⊢ ( ( Fun  𝐼  ∧  𝐹  ∈  Word  dom  𝐼  ∧  𝐾  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ‘ 𝐾 )  ∈  dom  𝐼 ) | 
						
							| 6 |  | fvelrn | ⊢ ( ( Fun  𝐼  ∧  ( 𝐹 ‘ 𝐾 )  ∈  dom  𝐼 )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) )  ∈  ran  𝐼 ) | 
						
							| 7 | 3 5 6 | syl2anc | ⊢ ( ( Fun  𝐼  ∧  𝐹  ∈  Word  dom  𝐼  ∧  𝐾  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) )  ∈  ran  𝐼 ) | 
						
							| 8 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 9 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 )  =  𝐼 | 
						
							| 10 | 9 | rneqi | ⊢ ran  ( iEdg ‘ 𝐺 )  =  ran  𝐼 | 
						
							| 11 | 2 8 10 | 3eqtri | ⊢ 𝐸  =  ran  𝐼 | 
						
							| 12 | 7 11 | eleqtrrdi | ⊢ ( ( Fun  𝐼  ∧  𝐹  ∈  Word  dom  𝐼  ∧  𝐾  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) )  ∈  𝐸 ) |