Step |
Hyp |
Ref |
Expression |
1 |
|
edginwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
edginwlk.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
simp1 |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun 𝐼 ) |
4 |
|
wrdsymbcl |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝐾 ) ∈ dom 𝐼 ) |
5 |
4
|
3adant1 |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝐾 ) ∈ dom 𝐼 ) |
6 |
|
fvelrn |
⊢ ( ( Fun 𝐼 ∧ ( 𝐹 ‘ 𝐾 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ ran 𝐼 ) |
7 |
3 5 6
|
syl2anc |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ ran 𝐼 ) |
8 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
9 |
1
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
10 |
9
|
rneqi |
⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
11 |
2 8 10
|
3eqtri |
⊢ 𝐸 = ran 𝐼 |
12 |
7 11
|
eleqtrrdi |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ∈ Word dom 𝐼 ∧ 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ∈ 𝐸 ) |