| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edglnl.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | edglnl.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | iunrab | ⊢ ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  =  { 𝑖  ∈  dom  𝐸  ∣  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  →  ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  =  { 𝑖  ∈  dom  𝐸  ∣  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 5 | 4 | uneq1d | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  →  ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  ( { 𝑖  ∈  dom  𝐸  ∣  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) | 
						
							| 6 |  | unrab | ⊢ ( { 𝑖  ∈  dom  𝐸  ∣  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  { 𝑖  ∈  dom  𝐸  ∣  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } ) } | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  →  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  →  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  →  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 10 |  | snidg | ⊢ ( 𝑁  ∈  𝑉  →  𝑁  ∈  { 𝑁 } ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  𝑁  ∈  { 𝑁 } ) | 
						
							| 12 |  | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑁 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑁  ∈  { 𝑁 } ) ) | 
						
							| 13 | 11 12 | syl5ibrcom | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ( 𝐸 ‘ 𝑖 )  =  { 𝑁 }  →  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 14 | 9 13 | jaod | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } )  →  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 15 |  | upgruhgr | ⊢ ( 𝐺  ∈  UPGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 16 | 2 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  𝐸 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝐺  ∈  UPGraph  →  Fun  𝐸 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  →  Fun  𝐸 ) | 
						
							| 19 | 2 | iedgedg | ⊢ ( ( Fun  𝐸  ∧  𝑖  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 20 | 18 19 | sylan | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 21 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 22 | 1 21 | upgredg | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 ) )  →  ∃ 𝑛  ∈  𝑉 ∃ 𝑚  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 } ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝐺  ∈  UPGraph  →  ( ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 )  →  ∃ 𝑛  ∈  𝑉 ∃ 𝑚  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 } ) ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 )  →  ∃ 𝑛  ∈  𝑉 ∃ 𝑚  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 } ) ) | 
						
							| 25 |  | dfsn2 | ⊢ { 𝑛 }  =  { 𝑛 ,  𝑛 } | 
						
							| 26 | 25 | eqcomi | ⊢ { 𝑛 ,  𝑛 }  =  { 𝑛 } | 
						
							| 27 |  | elsni | ⊢ ( 𝑁  ∈  { 𝑛 }  →  𝑁  =  𝑛 ) | 
						
							| 28 |  | sneq | ⊢ ( 𝑁  =  𝑛  →  { 𝑁 }  =  { 𝑛 } ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝑁  =  𝑛  →  { 𝑛 }  =  { 𝑁 } ) | 
						
							| 30 | 27 29 | syl | ⊢ ( 𝑁  ∈  { 𝑛 }  →  { 𝑛 }  =  { 𝑁 } ) | 
						
							| 31 | 26 30 | eqtrid | ⊢ ( 𝑁  ∈  { 𝑛 }  →  { 𝑛 ,  𝑛 }  =  { 𝑁 } ) | 
						
							| 32 | 31 26 | eleq2s | ⊢ ( 𝑁  ∈  { 𝑛 ,  𝑛 }  →  { 𝑛 ,  𝑛 }  =  { 𝑁 } ) | 
						
							| 33 |  | preq2 | ⊢ ( 𝑚  =  𝑛  →  { 𝑛 ,  𝑚 }  =  { 𝑛 ,  𝑛 } ) | 
						
							| 34 | 33 | eleq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ↔  𝑁  ∈  { 𝑛 ,  𝑛 } ) ) | 
						
							| 35 | 33 | eqeq1d | ⊢ ( 𝑚  =  𝑛  →  ( { 𝑛 ,  𝑚 }  =  { 𝑁 }  ↔  { 𝑛 ,  𝑛 }  =  { 𝑁 } ) ) | 
						
							| 36 | 34 35 | imbi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑁  ∈  { 𝑛 ,  𝑚 }  →  { 𝑛 ,  𝑚 }  =  { 𝑁 } )  ↔  ( 𝑁  ∈  { 𝑛 ,  𝑛 }  →  { 𝑛 ,  𝑛 }  =  { 𝑁 } ) ) ) | 
						
							| 37 | 32 36 | mpbiri | ⊢ ( 𝑚  =  𝑛  →  ( 𝑁  ∈  { 𝑛 ,  𝑚 }  →  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } )  →  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) | 
						
							| 39 | 38 | olcd | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) | 
						
							| 40 | 39 | expcom | ⊢ ( 𝑁  ∈  { 𝑛 ,  𝑚 }  →  ( 𝑚  =  𝑛  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) | 
						
							| 41 | 40 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } )  →  ( 𝑚  =  𝑛  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) | 
						
							| 42 | 41 | com12 | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) | 
						
							| 43 |  | simpr3 | ⊢ ( ( 𝑚  ≠  𝑛  ∧  ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } ) )  →  𝑁  ∈  { 𝑛 ,  𝑚 } ) | 
						
							| 44 |  | simpl | ⊢ ( ( 𝑚  ≠  𝑛  ∧  ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } ) )  →  𝑚  ≠  𝑛 ) | 
						
							| 45 | 44 | necomd | ⊢ ( ( 𝑚  ≠  𝑛  ∧  ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } ) )  →  𝑛  ≠  𝑚 ) | 
						
							| 46 |  | simpr2 | ⊢ ( ( 𝑚  ≠  𝑛  ∧  ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } ) )  →  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 ) ) | 
						
							| 47 |  | prproe | ⊢ ( ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑛  ≠  𝑚  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 ) )  →  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑣  ∈  { 𝑛 ,  𝑚 } ) | 
						
							| 48 | 43 45 46 47 | syl3anc | ⊢ ( ( 𝑚  ≠  𝑛  ∧  ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } ) )  →  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑣  ∈  { 𝑛 ,  𝑚 } ) | 
						
							| 49 |  | r19.42v | ⊢ ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ↔  ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) 𝑣  ∈  { 𝑛 ,  𝑚 } ) ) | 
						
							| 50 | 43 48 49 | sylanbrc | ⊢ ( ( 𝑚  ≠  𝑛  ∧  ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } ) )  →  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } ) ) | 
						
							| 51 | 50 | orcd | ⊢ ( ( 𝑚  ≠  𝑛  ∧  ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } ) )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) | 
						
							| 52 | 51 | ex | ⊢ ( 𝑚  ≠  𝑛  →  ( ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) | 
						
							| 53 | 42 52 | pm2.61ine | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  ∧  𝑁  ∈  { 𝑛 ,  𝑚 } )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) | 
						
							| 54 | 53 | 3exp | ⊢ ( 𝑁  ∈  𝑉  →  ( ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  →  ( 𝑁  ∈  { 𝑛 ,  𝑚 }  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) ) | 
						
							| 55 | 54 | ad2antlr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 )  →  ( 𝑁  ∈  { 𝑛 ,  𝑚 }  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 ) )  →  ( 𝑁  ∈  { 𝑛 ,  𝑚 }  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) | 
						
							| 57 |  | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑁  ∈  { 𝑛 ,  𝑚 } ) ) | 
						
							| 58 |  | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( 𝑣  ∈  ( 𝐸 ‘ 𝑖 )  ↔  𝑣  ∈  { 𝑛 ,  𝑚 } ) ) | 
						
							| 59 | 57 58 | anbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } ) ) ) | 
						
							| 60 | 59 | rexbidv | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } ) ) ) | 
						
							| 61 |  | eqeq1 | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( ( 𝐸 ‘ 𝑖 )  =  { 𝑁 }  ↔  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) | 
						
							| 62 | 60 61 | orbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } )  ↔  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) | 
						
							| 63 | 57 62 | imbi12d | ⊢ ( ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } ) )  ↔  ( 𝑁  ∈  { 𝑛 ,  𝑚 }  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  { 𝑛 ,  𝑚 }  ∧  𝑣  ∈  { 𝑛 ,  𝑚 } )  ∨  { 𝑛 ,  𝑚 }  =  { 𝑁 } ) ) ) ) | 
						
							| 64 | 56 63 | syl5ibrcom | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  ∧  ( 𝑛  ∈  𝑉  ∧  𝑚  ∈  𝑉 ) )  →  ( ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } ) ) ) ) | 
						
							| 65 | 64 | rexlimdvva | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ∃ 𝑛  ∈  𝑉 ∃ 𝑚  ∈  𝑉 ( 𝐸 ‘ 𝑖 )  =  { 𝑛 ,  𝑚 }  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } ) ) ) ) | 
						
							| 66 | 24 65 | syld | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ( 𝐸 ‘ 𝑖 )  ∈  ( Edg ‘ 𝐺 )  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } ) ) ) ) | 
						
							| 67 | 20 66 | mpd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  →  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } ) ) ) | 
						
							| 68 | 14 67 | impbid | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑖  ∈  dom  𝐸 )  →  ( ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } )  ↔  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 69 | 68 | rabbidva | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  →  { 𝑖  ∈  dom  𝐸  ∣  ( ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ∨  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } ) }  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) | 
						
							| 70 | 6 69 | eqtrid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  →  ( { 𝑖  ∈  dom  𝐸  ∣  ∃ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) | 
						
							| 71 | 5 70 | eqtrd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  →  ( ∪  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) }  ∪  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) |