| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							edgnbusgreu.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							edgnbusgreu.n | 
							⊢ 𝑁  =  ( 𝐺  NeighbVtx  𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  𝐺  ∈  USGraph )  | 
						
						
							| 4 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( 𝐶  ∈  𝐸  ↔  𝐶  ∈  ( Edg ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							biimpi | 
							⊢ ( 𝐶  ∈  𝐸  →  𝐶  ∈  ( Edg ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  𝐶  ∈  ( Edg ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  𝑀  ∈  𝐶 )  | 
						
						
							| 8 | 
							
								
							 | 
							usgredg2vtxeu | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐶  ∈  ( Edg ‘ 𝐺 )  ∧  𝑀  ∈  𝐶 )  →  ∃! 𝑛  ∈  ( Vtx ‘ 𝐺 ) 𝐶  =  { 𝑀 ,  𝑛 } )  | 
						
						
							| 9 | 
							
								3 6 7 8
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ∃! 𝑛  ∈  ( Vtx ‘ 𝐺 ) 𝐶  =  { 𝑀 ,  𝑛 } )  | 
						
						
							| 10 | 
							
								
							 | 
							df-reu | 
							⊢ ( ∃! 𝑛  ∈  ( Vtx ‘ 𝐺 ) 𝐶  =  { 𝑀 ,  𝑛 }  ↔  ∃! 𝑛 ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  | 
						
						
							| 11 | 
							
								
							 | 
							prcom | 
							⊢ { 𝑀 ,  𝑛 }  =  { 𝑛 ,  𝑀 }  | 
						
						
							| 12 | 
							
								11
							 | 
							eqeq2i | 
							⊢ ( 𝐶  =  { 𝑀 ,  𝑛 }  ↔  𝐶  =  { 𝑛 ,  𝑀 } )  | 
						
						
							| 13 | 
							
								12
							 | 
							biimpi | 
							⊢ ( 𝐶  =  { 𝑀 ,  𝑛 }  →  𝐶  =  { 𝑛 ,  𝑀 } )  | 
						
						
							| 14 | 
							
								13
							 | 
							eleq1d | 
							⊢ ( 𝐶  =  { 𝑀 ,  𝑛 }  →  ( 𝐶  ∈  𝐸  ↔  { 𝑛 ,  𝑀 }  ∈  𝐸 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							biimpcd | 
							⊢ ( 𝐶  ∈  𝐸  →  ( 𝐶  =  { 𝑀 ,  𝑛 }  →  { 𝑛 ,  𝑀 }  ∈  𝐸 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ( 𝐶  =  { 𝑀 ,  𝑛 }  →  { 𝑛 ,  𝑀 }  ∈  𝐸 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantld | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ( ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } )  →  { 𝑛 ,  𝑀 }  ∈  𝐸 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							imp | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  ∧  ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  →  { 𝑛 ,  𝑀 }  ∈  𝐸 )  | 
						
						
							| 19 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  ∧  ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  →  𝐶  =  { 𝑀 ,  𝑛 } )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							jca | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  ∧  ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  →  ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simpl | 
							⊢ ( ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } )  →  { 𝑛 ,  𝑀 }  ∈  𝐸 )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 23 | 
							
								1 22
							 | 
							usgrpredgv | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝑛 ,  𝑀 }  ∈  𝐸 )  →  ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑀  ∈  ( Vtx ‘ 𝐺 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							simpld | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝑛 ,  𝑀 }  ∈  𝐸 )  →  𝑛  ∈  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 25 | 
							
								3 21 24
							 | 
							syl2an | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  ∧  ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  →  𝑛  ∈  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  ∧  ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  →  𝐶  =  { 𝑀 ,  𝑛 } )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							jca | 
							⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  ∧  ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  →  ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  | 
						
						
							| 28 | 
							
								20 27
							 | 
							impbida | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ( ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } )  ↔  ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eubidv | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ( ∃! 𝑛 ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } )  ↔  ∃! 𝑛 ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							biimpd | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ( ∃! 𝑛 ( 𝑛  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  =  { 𝑀 ,  𝑛 } )  →  ∃! 𝑛 ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) ) )  | 
						
						
							| 31 | 
							
								10 30
							 | 
							biimtrid | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ( ∃! 𝑛  ∈  ( Vtx ‘ 𝐺 ) 𝐶  =  { 𝑀 ,  𝑛 }  →  ∃! 𝑛 ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) ) )  | 
						
						
							| 32 | 
							
								9 31
							 | 
							mpd | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ∃! 𝑛 ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  | 
						
						
							| 33 | 
							
								2
							 | 
							eleq2i | 
							⊢ ( 𝑛  ∈  𝑁  ↔  𝑛  ∈  ( 𝐺  NeighbVtx  𝑀 ) )  | 
						
						
							| 34 | 
							
								1
							 | 
							nbusgreledg | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑀 )  ↔  { 𝑛 ,  𝑀 }  ∈  𝐸 ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							bitrid | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝑛  ∈  𝑁  ↔  { 𝑛 ,  𝑀 }  ∈  𝐸 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							anbi1d | 
							⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝑛  ∈  𝑁  ∧  𝐶  =  { 𝑀 ,  𝑛 } )  ↔  ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ( ( 𝑛  ∈  𝑁  ∧  𝐶  =  { 𝑀 ,  𝑛 } )  ↔  ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							eubidv | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ( ∃! 𝑛 ( 𝑛  ∈  𝑁  ∧  𝐶  =  { 𝑀 ,  𝑛 } )  ↔  ∃! 𝑛 ( { 𝑛 ,  𝑀 }  ∈  𝐸  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) ) )  | 
						
						
							| 39 | 
							
								32 38
							 | 
							mpbird | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ∃! 𝑛 ( 𝑛  ∈  𝑁  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  | 
						
						
							| 40 | 
							
								
							 | 
							df-reu | 
							⊢ ( ∃! 𝑛  ∈  𝑁 𝐶  =  { 𝑀 ,  𝑛 }  ↔  ∃! 𝑛 ( 𝑛  ∈  𝑁  ∧  𝐶  =  { 𝑀 ,  𝑛 } ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							sylibr | 
							⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝐸  ∧  𝑀  ∈  𝐶 ) )  →  ∃! 𝑛  ∈  𝑁 𝐶  =  { 𝑀 ,  𝑛 } )  |