Metamath Proof Explorer


Theorem edgssv2

Description: An edge of a simple graph is an unordered pair of vertices, i.e. a subset of the set of vertices of size 2. (Contributed by AV, 10-Jan-2020) (Revised by AV, 23-Oct-2020)

Ref Expression
Hypotheses edgssv2.v 𝑉 = ( Vtx ‘ 𝐺 )
edgssv2.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion edgssv2 ( ( 𝐺 ∈ USGraph ∧ 𝐶𝐸 ) → ( 𝐶𝑉 ∧ ( ♯ ‘ 𝐶 ) = 2 ) )

Proof

Step Hyp Ref Expression
1 edgssv2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 edgssv2.e 𝐸 = ( Edg ‘ 𝐺 )
3 2 eleq2i ( 𝐶𝐸𝐶 ∈ ( Edg ‘ 𝐺 ) )
4 edgusgr ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) )
5 3 4 sylan2b ( ( 𝐺 ∈ USGraph ∧ 𝐶𝐸 ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) )
6 elpwi ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝐶 ⊆ ( Vtx ‘ 𝐺 ) )
7 6 anim1i ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) )
8 5 7 syl ( ( 𝐺 ∈ USGraph ∧ 𝐶𝐸 ) → ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) )
9 1 a1i ( ( 𝐺 ∈ USGraph ∧ 𝐶𝐸 ) → 𝑉 = ( Vtx ‘ 𝐺 ) )
10 9 sseq2d ( ( 𝐺 ∈ USGraph ∧ 𝐶𝐸 ) → ( 𝐶𝑉𝐶 ⊆ ( Vtx ‘ 𝐺 ) ) )
11 10 anbi1d ( ( 𝐺 ∈ USGraph ∧ 𝐶𝐸 ) → ( ( 𝐶𝑉 ∧ ( ♯ ‘ 𝐶 ) = 2 ) ↔ ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) )
12 8 11 mpbird ( ( 𝐺 ∈ USGraph ∧ 𝐶𝐸 ) → ( 𝐶𝑉 ∧ ( ♯ ‘ 𝐶 ) = 2 ) )