| Step |
Hyp |
Ref |
Expression |
| 1 |
|
edgssv2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
edgssv2.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
2
|
eleq2i |
⊢ ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
| 4 |
|
edgusgr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 5 |
3 4
|
sylan2b |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 6 |
|
elpwi |
⊢ ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ) |
| 7 |
6
|
anim1i |
⊢ ( ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) → ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
| 9 |
1
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → 𝑉 = ( Vtx ‘ 𝐺 ) ) |
| 10 |
9
|
sseq2d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ⊆ 𝑉 ↔ 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 11 |
10
|
anbi1d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐶 ⊆ 𝑉 ∧ ( ♯ ‘ 𝐶 ) = 2 ) ↔ ( 𝐶 ⊆ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) ) |
| 12 |
8 11
|
mpbird |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ⊆ 𝑉 ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |