Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | edgstruct.s | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } | |
Assertion | edgstruct | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( Edg ‘ 𝐺 ) = ran 𝐸 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgstruct.s | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } | |
2 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
3 | 1 | struct2griedg | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( iEdg ‘ 𝐺 ) = 𝐸 ) |
4 | 3 | rneqd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ran ( iEdg ‘ 𝐺 ) = ran 𝐸 ) |
5 | 2 4 | syl5eq | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( Edg ‘ 𝐺 ) = ran 𝐸 ) |