Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | edgstruct.s | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } | |
| Assertion | edgstruct | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( Edg ‘ 𝐺 ) = ran 𝐸 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | edgstruct.s | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } | |
| 2 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 3 | 1 | struct2griedg | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( iEdg ‘ 𝐺 ) = 𝐸 ) | 
| 4 | 3 | rneqd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ran ( iEdg ‘ 𝐺 ) = ran 𝐸 ) | 
| 5 | 2 4 | eqtrid | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋 ) → ( Edg ‘ 𝐺 ) = ran 𝐸 ) |