Description: Properties of an edge of a multigraph. (Contributed by AV, 25-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | edgumgr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐸 ) = 2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgredgss | ⊢ ( 𝐺 ∈ UMGraph → ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
2 | 1 | sselda | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) → 𝐸 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
3 | fveqeq2 | ⊢ ( 𝑥 = 𝐸 → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ 𝐸 ) = 2 ) ) | |
4 | 3 | elrab | ⊢ ( 𝐸 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐸 ) = 2 ) ) |
5 | 2 4 | sylib | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐸 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐸 ) = 2 ) ) |