Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
2 |
1
|
rneqd |
⊢ ( 𝑔 = 𝐺 → ran ( iEdg ‘ 𝑔 ) = ran ( iEdg ‘ 𝐺 ) ) |
3 |
|
df-edg |
⊢ Edg = ( 𝑔 ∈ V ↦ ran ( iEdg ‘ 𝑔 ) ) |
4 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
5 |
4
|
rnex |
⊢ ran ( iEdg ‘ 𝐺 ) ∈ V |
6 |
2 3 5
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
7 |
|
rn0 |
⊢ ran ∅ = ∅ |
8 |
7
|
a1i |
⊢ ( ¬ 𝐺 ∈ V → ran ∅ = ∅ ) |
9 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( iEdg ‘ 𝐺 ) = ∅ ) |
10 |
9
|
rneqd |
⊢ ( ¬ 𝐺 ∈ V → ran ( iEdg ‘ 𝐺 ) = ran ∅ ) |
11 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( Edg ‘ 𝐺 ) = ∅ ) |
12 |
8 10 11
|
3eqtr4rd |
⊢ ( ¬ 𝐺 ∈ V → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
13 |
6 12
|
pm2.61i |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |