Metamath Proof Explorer


Theorem ee020

Description: e020 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee020.1 𝜑
ee020.2 ( 𝜓 → ( 𝜒𝜃 ) )
ee020.3 𝜏
ee020.4 ( 𝜑 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion ee020 ( 𝜓 → ( 𝜒𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee020.1 𝜑
2 ee020.2 ( 𝜓 → ( 𝜒𝜃 ) )
3 ee020.3 𝜏
4 ee020.4 ( 𝜑 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 1 a1i ( 𝜒𝜑 )
6 5 a1i ( 𝜓 → ( 𝜒𝜑 ) )
7 3 a1i ( 𝜒𝜏 )
8 7 a1i ( 𝜓 → ( 𝜒𝜏 ) )
9 6 2 8 4 ee222 ( 𝜓 → ( 𝜒𝜂 ) )