Metamath Proof Explorer


Theorem ee021

Description: e021 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee021.1 𝜑
ee021.2 ( 𝜓 → ( 𝜒𝜃 ) )
ee021.3 ( 𝜓𝜏 )
ee021.4 ( 𝜑 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion ee021 ( 𝜓 → ( 𝜒𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee021.1 𝜑
2 ee021.2 ( 𝜓 → ( 𝜒𝜃 ) )
3 ee021.3 ( 𝜓𝜏 )
4 ee021.4 ( 𝜑 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 1 a1i ( 𝜒𝜑 )
6 5 a1i ( 𝜓 → ( 𝜒𝜑 ) )
7 3 a1d ( 𝜓 → ( 𝜒𝜏 ) )
8 6 2 7 4 ee222 ( 𝜓 → ( 𝜒𝜂 ) )