Metamath Proof Explorer


Theorem ee02an

Description: e02an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee02an.1 𝜑
ee02an.2 ( 𝜓 → ( 𝜒𝜃 ) )
ee02an.3 ( ( 𝜑𝜃 ) → 𝜏 )
Assertion ee02an ( 𝜓 → ( 𝜒𝜏 ) )

Proof

Step Hyp Ref Expression
1 ee02an.1 𝜑
2 ee02an.2 ( 𝜓 → ( 𝜒𝜃 ) )
3 ee02an.3 ( ( 𝜑𝜃 ) → 𝜏 )
4 3 ex ( 𝜑 → ( 𝜃𝜏 ) )
5 1 2 4 mpsylsyld ( 𝜓 → ( 𝜒𝜏 ) )