Metamath Proof Explorer


Theorem ee101

Description: e101 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee101.1 ( 𝜑𝜓 )
ee101.2 𝜒
ee101.3 ( 𝜑𝜃 )
ee101.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
Assertion ee101 ( 𝜑𝜏 )

Proof

Step Hyp Ref Expression
1 ee101.1 ( 𝜑𝜓 )
2 ee101.2 𝜒
3 ee101.3 ( 𝜑𝜃 )
4 ee101.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 2 a1i ( 𝜑𝜒 )
6 1 5 3 4 syl3c ( 𝜑𝜏 )